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Abstract. Engineers have a lot to gain from studying

biology. The study of biological neural systems alone pro-

vides numerous examples of computational systems that are

far more complex than any man-made system and perform
real-time sensory and motor tasks in a manner that humbles

the most advanced artificial systems. Despite the evolution-

ary genesis of these systems and the vast apparent differ-

ences between species, there are common design strategies

employed by biological systems that span taxa, and engi-

neers would do well to emulate these strategies. However,

biologically-inspired computational architectures, which are

continuous-time and parallel in nature, do not map well onto

conventional processors, which are discrete-time and serial

in operation. Rather, an implementation technology that is

capable of directly realizing the layered parallel structure

and nonlinear elements employed by neurobiology is re-

quired for power- and space-efficient implementation. Cus-

tom neuromorphic hardware meets these criteria and yields

low-power dedicated sensory systems that are small, light,

and ideal for autonomous robot applications. As examples
of how this technology is applied, this article describes both

a low-level neuromorphic hardware emulation of an ele-

mentary visual motion detector, and a large-scale, system-
level spatial motion integration system.
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Engineers Have a Lot to Gain From Studying Biology

The architecture of biological sensory systems has some-

thing to teach conventional engineering about system-level

design. Neurobiological representations of visual modalities

including depth, motion, color, and form are quite unlike

those employed by conventional computer vision systems.

Neurobiological computational architectures are not modu-

lar, linear, or feedforward. And yet biological organisms

routinely accomplish complex visual tasks such as object

recognition, obstacle avoidance, and target tracking, which

continue to challenge artificial systems.

Dealing with the complexity posed by the availability of

a multitude of parallel sensors and a large number of re-

dundant actuators is a major unsolved problem in modern

computational systems. As we become more ambitious in

our inclusion of computational systems into every possible

device, more sensory inputs are available: more actuators

are controlled by the computing system; more possible

conditions must be recognized and appropriately dealt with.

Engineers in fields from space-bound robotics and guided

missile design to automotive navigation and prosthetics are

beginning to realize the value of paying attention to biolog-

ical solutions. The biological literature is replete wiih de-

tailed analyses of systems that deal with complex sensory

and motor control tasks and still manage to outperform, by

any metric, anything created by mankind. In the papers in

this collection (CASSLS. 2001). for example, Robert Bar-

low and colleagues describe a finely elaborated model of

horseshoe crab visual processing, revealing how the crab

manages to navigate and find mates in a highly variable

and noisy underwater environment (Barlow et al, 2001);

Thomas Cronin and Justin Marshall give us insight into

the marvelously complex mantis shrimp visual system, a
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unique and highly specialized tool for predation (Cronin

and Marshall, 2001); Mandyam Srinivasan and co-work-

ers introduce us to the secrets of insect vision (Srinivasan

et til.. 2001).

The daunting task for engineers is to produce by ab-

straction from the specific organism a set of general de-

sign principles to replace the top-down, linear, functional-

block oriented strategies that characterize conventional

design. These principles may include layered massively

parallel processing, population coding, probabilistic infor-

mation transmission, a mix of analog and digital coding

strategies, connection-oriented architectures, removal of re-

dundant information at every processing stage, positive as

well as negative feedback, and the use of nonlinear compu-
tational elements (such as voltage-dependent conductances

and neurons with adaptive properties), even though these

elements make the system more difficult to describe analyt-

ically in closed form. Although the mathematical principles

underlying conventional design are well known, it is not

clear that we have the mathematical tools to analyze and

design systems such as those suggested by neurobiology.

However, these tools are being developed in the theory of

nonlinear dynamical systems, as well as in the study of

neurobiological systems themselves.

By building artificial sensory systems true to the repre-

sentations and computational architectures used by neuro-

biology, we will be able to produce novel, highly capable

autonomous robots, while at the same time suggesting test-

able hypotheses as to how biological systems accomplish

sensory and motor tasks.

vices, highly efficient computations can be performed on

signals represented by currents and voltages. Neuromorphic

technology focuses on analog computation for efficiency,

but in general mixes both analog and digital transistor

circuitry. The implementation can be at a level of abstrac-

tion from the biophysical (Hahnloser et al, 2000) to the

neural (Boahen. 1999) to the mathematical (Higgins and

Korrapati, 2000). The individual physical components in

such a design are on the scale of micrometers and are

fabricated together on a single piece of silicon measuring
millimeters on a side, resulting in a physically robust com-

pact package.

While general-purpose digital processors grow ever more

powerful, special-purpose hardware will always be more

efficient in power consumption and size for specific prob-

lems. This is because the former, by its nature, is not

optimized for any specific computation, whereas the latter

includes only the circuitry that is necessary for the problem
at hand. The efficiency of a task-specific analog implemen-
tation comes at the price of precision and flexibility. The

analog implementation of a computation is subject to inev-

itable noise that limits the possible precision, whereas a

digital implementation can (potentially but usually not prac-

tically) be performed with virtually unlimited precision. The

software implementation of a computation clearly has flex-

ibility to change at the programmer's whim, whereas a

dedicated hardware implementation is fixed at fabrication

time. With awareness of these trade-offs, a designer will

choose a special-purpose hardware solution where the

power and size constraints are most important. This is often

an appropriate choice in real-time vision applications on

autonomous robots.

Efficient Implementation of Biological Computational
Architectures

Because the primary computational strategy used by neu-

robiology is layered, massively parallel processing, an effi-

cient parallel implementation is essential to make effective

use of such computational architectures. Biological compu-
tational architectures, which are continuous-time parallel

algorithms, map very badly onto conventional discrete-time

serial processors. The conventional real-time implementa-
tion of a biological vision computation involves an imager

providing discrete-time frames to a high-speed signal pro-

cessor that serially performs a large number of operations

that could be performed in parallel. In contrast, true parallel

architectures may be straightforwardly implemented in neu-

romorphic VLSI (very large scale integration) hardware

(Mead, 1989). This type of special-purpose hardware im-

plements biological algorithms directly and efficiently in

patterns of transistors, resistors, and capacitors. By making
use of the physical primitives provided by electronic de-

An Example of Neuromorphic Implementation:
Low-Level Motion Detection

The neurobiological representation of visual motion in

organisms from insects to primates is in terms of oriented

spatiotemporal-frequency-tuned cells. The conventional op-

tical flow representation is mathematically a vector field,

allowing only one velocity of motion in every local area of

the visual scene. The biological representation of visual

motion is more powerful in that it allows multiple simulta-

neous directions of motion as long as they are distinguished

in spatial or temporal frequency, making possible our per-

ception of transparent motion and occlusion boundaries.

However, the biological representation of motion requires a

range of spatial- and temporal-frequency tunings to cover

all stimuli of interest. Primates have a tremendous number

of neurons (on the order of 10") and thus can afford to

populate the whole spatiotemporal frequency space with a
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large bank of tuned neurons for each spatial location. In-

sects, with a much smaller set of neurons (on the order of

10
5

), are forced to use a much smaller set of tunings, yet

they operate very effectively in the same environment. Thus

insects may provide engineers with a more neuron-efficient

example of a visual motion system.

In a seminal 1985 paper, Adelson and Bergen proposed a

model of the motion response of primate complex cells and

showed it to be equivalent to the Reichardt (1961) model of

elementary motion detection in the fly. We have imple-

mented this motion energy model in neuromorphic VLSI

hardware (Higgins and Korrapati, 2000), both to allow

system-level hardware modeling of biological motion sys-

tems, addressed in the next section, and to provide a sensi-

tive, real-time visual motion detector for robotic applica-

tions. Because of the lack of any digital thresholding step in

the algorithm, motion energy sensors (like the motion-

sensitive cells they model) are limited in contrast response

only by signal-to-noise ratio, allowing them to perceive the

direction of motion even for very low contrasts by integrat-

ing over time. The original algorithm, shown in Figure 1A,

combines the response of four simple cells with a rectifying

nonlinearity (a square) to create a spatiotemporal-fre-

quency-tuned estimate of motion direction. Figure IB

shows how this model was implemented in hardware: sev-

eral simplifications were made in the pursuit of a compact

implementation, but the algorithm still performs a highly

sensitive directional motion computation, as shown in Fig-

ure 2. This sensor was implemented with only 41 transis-

tors, allowing hundreds or thousands of parallel sensors on

a reasonably sized silicon substrate. Because of the analog

implementation, each sensor consumes less than 40 micro-

watts of power, allowing large-scale parallel implementa-

tion without problematic power consumption or special

cooling needs.

System-Level Neuromorphic Design:

Spatial Motion Integration

As mentioned earlier, the spatiotemporal filter represen-

tation of motion common to a wide variety of organisms

requires a range of spatial- and temporal-frequency tunings

to cover all stimuli of interest and thus, unlike the conven-

tional representation, must be implemented with a bank of

filters for each spatial location. Once this bank of filters is

computed, the information must be spatially integrated to be

of use to the organism; in other words, information about

spatial patterns of visual motion is more useful to the

animal than the low-level motion information itself. This

integration occurs in insect tangential neurons (Krapp and

Hengstenberg, 1996) and in the medial superior temporal

area (MST) of primate visual cortex (Perrone and Stone,

1998). This strategy suggests a computational architecture

like that shown in Figure 3A, which includes a first-stage

photosensitive array, a second stage of multiple parallel

motion-processor arrays computing different spatial fre-

quencies, orientations, and temporal frequencies, and a third

integration stage that can synthesize units sensitive to wide-

field spatial patterns of motion by combining spatial regions

of low-level motion detectors.

We have implemented a preliminary version of such an

architecture in neuromorphic VLSI hardware (Higgins and

Shams, unpubl. data), as shown in Figure 3B. Each two-

dimensional processing unit is implemented as a separate

VLSI chip; chips communicate using trains of spikes mod-

eling action potentials. This multi-chip neuromorphic VLSI

system is capable of synthesizing units sensitive to complex

arbitrary patterns of visual motion, including expansion,

contraction, rotation, and translation, as shown in Figure 4.

These patterns, along with more elaborate ones, allow de-

termination of imager self-motion through the world for

postural stability and navigation (Zemel and Sejnowski,

1998), tracking of objects (Gronenberg and Strausfeld,

1991), and obstacle avoidance (Gabbiani et al. 1999). De-

spite the multi-chip nature of the system, it is still a com-

pact, robust, low-power special-purpose computing system

ideal for robotic applications.

Summary

This article contends that biological representations and

computational architectures are useful in a wide range of

engineering problems. However, in practice, it is difficult to

separate biological algorithms from their implementation,

and so we also present an implementation technology, neu-

romorphic VLSI, which is well suited for physical realiza-

tion of these algorithms. A low-level motion processor

based on the Adelson-Bergen model was described to illus-

trate how a biological model may be directly mapped onto

an analog VLSI transistor circuit for highly efficient imple-

mentation. From an engineer's perspective, this sensor ben-

efits not only from the biological representation, but also

from the analog nature of the biological model computation.

A multi-stage motion-processing system was also de-

scribed, exemplifying a biologically inspired computing

architecture that also uses representations inspired by biol-

ogy. This architecture is very well matched to the vision

problem and allows a specific useful computation to be done

with very low requirements for power consumption and

size. It is the author's contention that systems of this type

are the best hope for future highly capable small autono-

mous robotic systems.
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Figure 1. Low-level motion detection. (A) The canonical Adelson-Bergen motion energy model combines

each of an even and odd spatial Gahor tiller with two temporal bandpass filters to create me output of four linear

simple cells. The output of these simple cells is combined nonlinearly in quadrature pairs to create a

phase-independent motion direction estimate, which models a primate complex cell. (Bl For hardware imple-

mentation, the spatial filters were implemented with a center-surround diffusive network, and the temporal filters

by using a single lowpass filter. Rather than using a squaring operation, a simpler rectifying nonlinearity (the

absolute value) was employed. The output of the implementation is quite comparable to the original model.
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Figure 2. Output of the low-level motion detector. (A) The output of the hardware motion sensm i
.'< >v.n in

response to no stimulus (under fluorescent lighting), an orthogonal, preferred and null direction sinusoid grating. The

lighter traces represent raw output: darker lines are averaged output. (B) As the spatial and temporal frequency of a

moving sinusoidal stimulus is varied, the sensor shows a strong preference in a certain hand of frequencies.
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Figure 3. Architecture for spatial motion integration. (A) In the idealized system, a first-stage silicon retina

is followed by multiple second-stage motion processors tuned for different orientations and spatial and temporal

frequencies. Interaction is allowed between second-stage motion processors. The final stage integrates over space

to synthesize sensitivity to patterns of visual motion. (B) In the current system, the silicon retina detects moving

edges and transmits this information to the next stage. The second-stage motion processors use the moving edge

information to compute the direction of edge motion, with each of four processors tuned for a different direction

of motion. The final stage synthesizes spatial motion sensitivity.
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Figure 4. Performance of the spatial motion integration system. This figure shows the response of eight

simultaneously synthesized units to a wide-field stimulus a periodically contracting circle as the focus of

contraction is moved around the visual field. Lighter shading indicate stronger responses. The upper left unit is

tuned for contraction at the center of the visual field and thus shows a strong response there. The upper right unit

is tuned for expansion and thus shows no response. In the second row from the top. units tuned for clockwise

and counterclockwise rotation likewise show little or no response. However, units shown at the bottom tuned tor

translation in four different directions show a strong response when the focus of contraction nears the appropriate

edge of the visual field, because the farther the contracting pattern gets from the center, the more similar it

becomes to a simple translating pattern.
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